
areaDetector: A module for
EPICS area detector support

Mark Rivers

GeoSoilEnviroCARS, Advanced Photon Source

University of Chicago

• Motivation & goals for areaDetector module
• Overview of architecture
• Drivers for detectors & cameras
• Plugins for real-time processing
• Viewers and other clients
• Emphasis on what is new and plans for future
• Today: Morning lecture, afternoon demonstration
• Tomorrow: Hands-on practice with simulation or real

detectors
• Next week: Writing software for a new detector or a

new plugin

areaDetector Talk Outline

areaDetector - Motivation
• 2-D detectors are essential components of synchrotron

beamlines
– Sample viewing cameras, x-ray diffraction and scattering detectors, x-

ray imaging, optical spectroscopy, etc.

• EPICS is a very commonly used control system on beamlines,
(APS, DLS, SLS, SLAC, NSLS-II, Shanghai, etc.)

• Need to control the detectors from EPICS (useful even on non-
EPICS beamlines, since other control systems like SPEC etc.
can talk to EPICS)

• Clear advantages to an architecture that can be used on any
detector, re-using many software components

• Providing EPICS control allows any higher-level client to
control the detector and access the data (CSS, SPEC, medm,
Python scripts, IDL programs, etc)

– The client needs only to know how to talk to EPICS, not the details of the
detector

areaDetector - Goals
• Drivers for many detectors popular at synchrotron beamlines

– Handle detectors ranging from >500 frames/second to <1 frame/second

• Basic parameters for all detectors
– E.g. exposure time, start acquisition, etc.
– Allows generic clients to be used for many applications

• Easy to implement new detector
– Single device-driver C++ file to write. EPICS independent.

• Easy to implement detector-specific features
– Driver understands additional parameters beyond those in the basic set

• EPICS-independent at lower layers.
• Middle-level plug-ins to add capability like regions-of-interest

calculation, file saving, etc.
– Device independent, work with all drivers
– Below the EPICS database and Channel Access layers for highest

performance

• NDArray
– N-Dimensional array.

• Everything is done in N-dimensions (up to 10), rather than 2. This is
needed even for 2-D detectors to support color.

– This is what plug-ins callbacks receive from device drivers.
• NDAttribute

– Each NDArray has a list of associated attributes (metadata) that
travel with the array through the processing pileline. Attributes can
come from driver parameters, any EPICS PV, or any user-written
function.

• e.g. can store motor positions, temperature, ring current, etc. with each
frame.

• NDArrayPool
– Allocates NDArray objects from a freelist
– Plugins access in readonly mode, increment reference count
– Eliminates need to copy data when sending it to plugins.

areaDetector – Data structures

ADBase
.template

Standard asyn device support
(device-independent)

Vendor API

Driver

Channel Access Clients (medm, IDL, ImageJ, SPEC, etc.)

EPICS areaDetector Architecture

xxxDriver
.template

Hardware

C++ Base classes
(NDArray, asynPortDriver,
asynNDArrayDriver,
ADDriver, NDPluginDriver)

Layer 5
Standard
EPICS records

Layer 4
EPICS device
support

Layer 3
Plug-ins

Layer 1
Hardware API

Layer 2
Device drivers

Layer 6
EPICS CA clients

StdArrays
File

(netCDF, TIFF, JPEG,
HDF5)

NDPluginXXX.
template

Channel access
Record/device support
asynInt32, Float64, Octet

asynGenericPointer (NDArray)
asynXXXArray

C library calls

NDPluginBase
.template

ROI Process

Look at NDArray.h

Look at NDAttribute.h

Look at an XML attribute file

areaDetector – Data structures

• areaDetector was getting too big.
– New releases being held up waiting for testing on one

detector types, etc.
• Hard to collaborate with other sites using APS

Subversion repository
– git and github provide much better tools for multi-site

collaborations

areaDetector R2-0 Release

– Each box above is a separate git repository
– Can be released independently
– Hosted at http://github.com/areaDetector project
– Each repository is a submodule under areaDetector/areaDetector

R2-0 Organization
areaDetector

Top-level module
RELEASE files, documentation, Makefile

ADCore
Core module

Base classes, plugins,
simDetector, documentation

ADBinaries
Binary libraries for
Windows (HDF5,
GraphicsMagick)

ADProsilica
Prosilica driver

ADPilatus
Pilatus driver

…

Source Code Organization on github
• https://github.com/areaDetector is top-level

project
• Contains configure/ directory where paths

and versions of supporting software are
defined

• Contain .gitmodules to define submodules
that will be cloned with git clone –recursive

• Contains documentation directory that builds
and installs documentation

• Contains a top-level Makefile to build all or
selected submodules

Types of Detector Drivers
• Vendor C/C++ library
• Vendor socket protocol
• Vendor application program with automation mechanism

Detector drivers (23 total)
• ADDriver (in ADCore)

– Base C++ class from which detector drivers derive. Handles details
of EPICS interfaces, and other common functions.

• Simulation driver (in ADCore)
– Produces calculated images up to very high rates. Implements nearly

all basic parameters, including color. Useful as a model for real
detector drivers, and to test plugins and clients.

• Prosilica driver (ADProsilica)
– Gigabit Ethernet cameras, mono and color
– High resolution, high speed, e.g. 1360x1024 at 30 frames/second =

40MB/second.
– Controlled via calls to vendor PvAPI C library

• Firewire (IEEE-1396 DCAM) (ADFireWireWin,
firewireDCAM)

– Vendor-independent Firewire camera drivers for Linux and
Windows

– Controlled via open-source libraries on Windows and Linux

Detector drivers
• Roper driver (ADRoper)

– Princeton Instruments and Photometrics cameras controlled via
Microsoft COM control of WinView applications

• PVCAM driver (ADPvCam)
– Princeton Instruments and Photometrics cameras
– Controlled via PVCAM C library

• Pilatus driver (ADPilatus)
– Pilatus pixel-array detectors.
– Controlled via sockets to vendor camserver application

• marCCD driver (ADmarCCD)
– Rayonix (MAR-USA) CCD x-ray detectors
– Controlled by socket communication to marCCD remote control

• ADSC driver (ADADSC)
– ADSC CCD detectors
– Controlled by C calls to vendor library

Detector drivers (continued)
• mar345 driver (ADmar345)

– marResearch mar345 online image plate
– Controlled by socket communication to mar345dtb socket server

• Perkin-Elmer driver (ADPerkinElemer)
– Perkin-Elmer amorphous silicon flat-panel detectors
– Controlled by C calls to vendor library

• Bruker driver (ADBruker)
– Bruker CCD detectors
– Controlled via their Bruker Instrument Server (BIS) socket server

• LightField driver (ADLightField)
– Princeton Instruments detectors, including all recent models
– Controlled via their LightField application using the Microsoft

Common Language Runtime to automate it

Detector drivers (continued)
• PICAM driver (ADPiCam)

– Princeton Instruments cameras, including recent models
– Controlled via PICAM C library
– Currently under development by John Hammonds

• PSL driver (ADPSL)
– Photonic Sciences Limited detectors
– Controlled via socket connection to their Python PSLViewer server

• URL driver (ADURL)
– Driver to display images from any URL. Works with Web cameras,

Axis video servers, static images, etc.
– Controlled by calls to GraphicsMagick library

Detector drivers (continued)
• Andor driver (ADAndor)

– Driver for Andor CCD cameras
– Controlled by calls to V2 of their C SDK

• Andor3 driver (ADAndor3)
– Driver for Andor sCMOS cameras
– Controlled by calls to V3 of their SDK

• Point Grey driver (ADPointGrey)
– Driver for GigE, USB-3.0, USB-2.0, and Firewire cameras from

Point Grey Research
– Controlled by calls to their C SDK

• Pixirad driver (ADPixirad)
– Driver for CdTe pixel-array detectors from Pixirad
– Controlled by TCP and UDP communication with their detector

Detector drivers (continued)
• Generic GigE driver (aravisGigE)

– Should work with any GigEVision compliant camera. From Tom
Cobb at Diamond.

– Controlled using the Aravis reverse-engineered GigEVision library

• QImaging driver (ADQImaging)
– QImaging cameras.
– Controlled using Qimaging SDK
– Written by Arthur Glowacki

• ADPvAccess
– Driver that receives NDArrays over EPICS V4
– Allows plugins to run in an EPICS IOC on a different machine than

the detector
– Written by David Hickin from Diamond.

ADBase.adl – Generic control screen

• Works with any
detector

• Normally write custom
control for each
detector type to hide
unimplemented
features and expose
driver-specific features

Pilatus specific control screen

MAR-345 specific control screen

LightField driver

LightField driver

URL Driver
• Driver that can read images from any URL.
• Can be used with Web cameras and Axis video servers.
• Uses GraphicsMagick to read the images, and can thus handle a large number

of image formats (JPEG, TIFF, PNG, etc.).

Andor Driver
• Supports USB and PCI CCD

cameras from Andor.
• Runs on 32-bit and 64-bit Linux

and 32-bit and 64-bit Windows.
• Original version by Matt Pearson

from Diamond Light Source.

Perkin Elmer Flat Panel Driver

• New driver for all cameras from Point Grey using their
FlyCap2 SDK.

• Firewire, GigE and USB 3.0
• High performance, low cost

R2-0: Point Grey driver

- e2v EV76C570 CMOS sensor
- Global shutter
- 29 x 29 x 30 mm
- Power Over Ethernet
- 4.5 micron pixels
- 1600 x 1200 pixels, color (mono)
- 47 frames/s
- $595

- 5X cheaper than comparable Prosilica cameras we bought in the past

Point Grey GigE Camera
BlackFly PGE-20E4C

• 1920 x 1200 global shutter CMOS
• Sony IMX174 1/1.2
• No smear • Distortion-free
• Dynamic range of 73 dB
• Peak QE of 76%
• Read noise of 7e-
• 12-bit or 8-bit data
• Max frame rate of 162 fps

– ~356 MB/S, >3X faster than GigE

• USB 3.0 interface
• $1,295

Point Grey USB-3.0 Camera
Grasshopper3 GS3-U3-23S6M

Point Grey Driver

Point Grey Driver (Grasshopper3 camera)

Plugins
• Designed to perform real-time processing of data, running in the EPICS

IOC (not over EPICS Channel Access)
• Receive NDArray data over callbacks from drivers or other plugins
• Plug-ins can execute in their own threads (non-blocking) or in callback

thread (blocking)
– If non-blocking then NDArray data is queued

• Can drop images if queue is full
– If executing in callback thread, no queuing, but slows device driver

• Allows
– Enabling/disabling
– Throttling rate (no more than 0.5 seconds, etc)
– Changing data source for NDArray callbacks to another driver or plugin

• Some plugins are also sources of NDArray callbacks, as well as
consumers.

– Allows creating a data processing pipeline running at very high speed, each
in a different thread, and hence in multiple cores on modern CPUs.

Plugins (continued)
• NDPlugInStdArrays

– Receives arrays (images) from device drivers, converts to standard arrays, e.g.
waveform records.

– This plugin is what EPICS channel access viewers normally talk to.
• NDPluginROI

– Performs region-of-interest calculations
– Select a subregion. Optionally bin, reverse in either direction, convert data type.
– Divide the array by a scale factor, which is useful for avoiding overflow when

binning.
• NDPluginColorConvert

– Convert from one color model to another (Mono, RGB1 (pixel), RGB2 (row) or
RGB3 (planar) interleave)

– Bayer conversion removed from this plugin, now part of Prosilica and Point Grey
drivers.

• NDPluginTransform
– Performs geometric operations (rotate, mirror in X or Y, etc.)

• NDPluginStats
– Calculates basic statistics on an array (min, max, sigma)
– Optionally computes centroid centroid position, width and tilt.
– Optionally Computes X and Y profiles, including average profiles, profiles

at the centroid position, and profiles at a user-defined cursor position.
– Optionally computes the image histogram and entropy

• NDPluginProcess
– Does arithmetic processing on arrays
– Background subtraction.
– Flat field normalization.
– Offset and scale.
– Low and high clipping.
– Recursive filtering in the time domain.
– Conversion to a different output data type.

• NDPluginOverlay
– Adds graphic overlays to an image.
– Can be used to display ROIs, multiple cursors, user-defined boxes, text, etc.

Plugins (continued)

• NDPluginCircularBuffer
– Buffers NDArrays in a circular buffer.
– Outputs the arrays on receipt of a trigger, either as PV or NDArray

attribute.
– Supports pre-trigger and post-trigger samples
– Written by Alan Greer at Observatory Sciences

• NDPluginAttribute
– Extracts an attribute from an NDArray and publishes as a scalar and

an array
– Written by Matt Pearson at ORNL

• ADPluginEdge
– Does edge detection using the OpenCV Canny function
– Written by Keith Brister at LS-CAT

Plugins (recent additions)

• NDPluginROIStat
– Computes simple statistics on multiple ROIs.
– More efficient than chaining an NDPluginROI and NDPluginStats

when there are many ROIs
– Written by Matt Pearson at ORNL

• ffmpegServer
– MJPEG server that allows viewing images in a Web browser. From

DLS.
– Puts compressed images on the network, greatly reducing

bandwidth compared to uncompressed channel access arrays.

• ADPvAccess
– Plugin that sends NDArrays over EPICS V4
– Allows plugins to run in an EPICS IOC on a different machine than

the detector
– Written by David Hickin from Diamond.

Plugins (recent additions)

commonPlugins.adl All plugins at a glance

NDStdArrays plugin

ROI plugin

Statistics plugin

Statistics plugin (continued)

Overlay plugin

Overlay plugin

Overlay plugin

Overlay plugin

Centroid of laser pointer calculated by
statistics plugin
Cursor overlay X, Y position linked to
centroid

Processing plugin

Processing plugin
30 microsec exposure time

No filtering N=100 recursive average filter

Processing plugin
Pre-defined recursive filters

• RecursiveAve
• Recursive average.
• Computes running average with 1/N contribution from

new frame
• Average

• True average, averages next N frames
• Sum

• Sum of the next N frames
• Difference

• Difference of frame N and N-1
• RecursiveAveDiff

• Difference of recursive average and frame N
• CopyToFilter

• Make the last stored frame be the next frame

Transform plugin

R2-1 changes
• Greatly simplified: just

8 operations including
null operation

• 13-85 times faster than
previous releases
depending on data type,
color mode

Plugins: NDPluginFile

• Saves NDArrays to disk
• 3 modes:

– Single array per disk file
– Capture N arrays in memory, write to disk either multiple files or

as a single large file (for file formats that support this.)
– Stream arrays to a single large disk file

• For file formats that support it, stores not just NDArray
data but also NDAttributes

Plugins: NDPluginFile
• File formats currently supported

– NDFileTIFF
• Supports any NDArray data type
• Stores NDAttributes as ASCII user tags (R2-1)
• One array per file

– NDFileJPEG
• With compression control
• One array per file

– NDFileNetCDF
• Popular self-describing binary format, supported by Unidata at UCAR
• Multiple arrays per file

Plugins: NDPluginFile
– NDFileHDF5

• Writes HDF5 files with the native HDF5 API, unlike the NeXus plugin which uses
the NeXus API. Supports 3 types of compression.

• R2-1 supports using an XML file to define the layout and placement of NDArrays
and NDAttributes in the HDF5 file

– NDFileNeXus
• Standard file format for neutron and x-ray communities, based on HDF5,

which is another popular self-describing binary format; richer than netCDF
• May be deprecated in a future release since NeXus files can now be

produced with the NDFileHDF5 plugin using an appropriate XML layout
file

– NDFileMagick
• Uses GraphicsMagick to write files, and can write in dozens of file formats,

including JPEG, TIFF, PNG, PDF, etc.
– NDFileNull

• Used only to delete original driver files when no other file plugin is
running

NDPluginFile Recent Features
• New record, DeleteDriverFile. Allows file writing plugins to

delete the "original" file that the driver created for that array if
the following are all true:

– The DeleteDriverFile record is "Yes".
– The file plugin has successfully written a new file.
– The array contains an attribute called "DriverFileName" that contains the full file

name of the original file. The driver attributes XML file should contain a line like
the following:

<Attribute name="DriverFileName" type="PARAM" source="FULL_FILE_NAME"
datatype="string" description="Driver file name"/>

• Support for getting the file name and file number from array
attributes rather than from the normal EPICS PVs. Allows the
driver to control which plugin saves a particular array. (Ulrik
Pedersen)

• 2 new records, WriteStatus and WriteMessage to display status
of file writing operations.

NDPluginFile Recent Features
• “Lazy-open” (R2-1)

– Normally files in stream mode are opened when Capture PV is set to 1
– This requires that there have already been an NDArray received by that

plugin with the correct dimensions and attributes
– “Lazy-open” is selected the file is not opened until the first NDArray

callback happens after Capture is set to 1.
– Simpler for users, but poorer performance, can lead to dropped arrays

• File plugins can now create directories (R2-2)
• File plugins can write files with a temporary suffix and then

rename the file after writing is complete. (R2-2)
– Allows rsync, etc. to be used to copy files, with guarantee that they are

complete

File saving with driver
• In addition to file saving plugins, many vendor

libraries also support saving files (e.g. marCCD,
mar345, Pilatus, etc.) and this is supported at the driver
level.

• File saving plugin can be used instead of or in addition
to vendor file saving

– Can add additional metadata vendor does not support
– Could write JPEGS for Web display every minute, etc.

NDPluginFile display: TIFF

Example: saving 82 frames/second of 1024x1024 video to
TIFF files, a few dropped frames.

NDPluginFile display: netCDF

Example: streaming 47 frames/second of 1024x1024 video to
netCDF files, no dropped frames.

NDFileHDF5

NDFileHDF5
XML file to define file layout

<xml>
 <group name="entry">
 <attribute name="NX_class" source="constant" value="NXentry" type="string"></attribute>
 <group name="instrument">
 <attribute name="NX_class" source="constant" value="NXinstrument" type="string"></attribute>
 <group name="detector">
 <attribute name="NX_class" source="constant" value="NXdetector" type="string"></attribute>
 <dataset name="data" source="detector" det_default="true">
 <attribute name="NX_class" source="constant" value="SDS" type="string"></attribute>
 <attribute name="signal" source="constant" value="1" type="int"></attribute>
 <attribute name="target" source="constant" value="/entry/instrument/detector/data"
 type="string"></attribute>
 </dataset>
 <group name="NDAttributes">
 <attribute name="NX_class" source="constant" value="NXcollection" type="string"></attribute>
 <dataset name="ColorMode" source="ndattribute" ndattribute="ColorMode">
 </dataset>
 </group> <!-- end group NDAttribute -->
 </group> <!-- end group detector -->
 <group name="NDAttributes" ndattr_default="true">
 <attribute name="NX_class" source="constant" value="NXcollection" type="string"></attribute>
 </group> <!-- end group NDAttribute (default) -->
 <group name="performance">
 <dataset name="timestamp" source="ndattribute"></dataset>
 </group> <!-- end group performance -->
 </group> <!-- end group instrument -->
 <group name="data">
 <attribute name="NX_class" source="constant" value="NXdata" type="string"></attribute>
 <hardlink name="data" target="/entry/instrument/detector/data"></hardlink>
 <!-- The "target" attribute in /entry/instrument/detector/data is used to
 tell Nexus utilities that this is a hardlink -->
 </group> <!-- end group data -->
 </group> <!-- end group entry -->
</xml>

Viewers
• areaDetector allows generic viewers to be written

that receive images as EPICS waveform records
over Channel Access

• Current viewers include:
– ImageJ plugin EPICS_AD_Display. ImageJ is a very

popular image analysis program, written in Java, derived
from NIH Image.

– IDL EPICS_AD_Display.
– ffmpegServer allows image display in any Web browser
– ffmpegViewer high-performance Qt-based viewer for

MJPEG stream

ImageJ Viewer

Internals
Class hierarchy

Recent Changes (R2-0)
• Added EPICS timestamp field to NDArray
• EPICS records can get the timestamp when the image was

collected by setting TSE=-2.
• Added NDAttributeFunct, allows user-written function to

set the value of an attribute

Recent Changes (R2-1)
• NDPluginTransform

– Greatly simplified and performance improved

• NDPluginFile
– Added support for “lazy-open”

• NDFileHDF5
– Support for defining the layout of the HDF5 file via an XML file

• NDFileTIFF
– NDAttributes are written to user ASCII TIFF tags (up to 490)

• NDPluginOverlay
– Support for text overlays
– Support for defining the line width in rectangle and cross overlays

Recent Changes (R2-2, not released)
• NDPluginFile

– Added support for creating directories
– Added support for using a temporary suffix and renaming on close

• NDPluginROIStat
– New plugin to do simple statistics on multiple ROIs

• simDetectorNoIOC
– Example standalone C++ application that instantiates a

simDetector without running an EPICS IOC
– Shows that areaDetector drivers and plugins only depend on

libCom and asyn libraries. Can be used from other control
systems.

Future Ideas (R2-3?)
• Make trigger modes in ADBase be Free Run, Fixed Rate,

External. Now it is Internal, External.
• AcquirePeriod would only apply in fixed rate, not in Free

Run. This is easier for users.

Future Ideas (R3-0?)
• Simplify NDPluginFile base class and way file saving

works
– Remove the Single/Stream/Capture mode.

• Two parameters
– # NDArrays to save (already present)
– # NDArrays per file (new)
– This allows saving only 1 array per HDF5 file, which is not

possible now in Stream mode.

• Capture mode can be replaced:
– Make input queue large enough OR
– Use new NDPluginCircularBuffer

Future Ideas
• Put more functionality into ADDriver base class

– Currently it does not do much, all code is in each driver for:
• Doing callbacks to plugins
• Processing new exposure time with writeFloat64 function

– writeFloat64 in ADDriver base class would call setExposure() in
derived class

– Derived class would call ADDriver::doPluginCallbacks(), which
would handle setting attributes, getting timestamp, calling plugins,
etc.

• This is the way the Model 3 motor driver, which also uses
asynPortDriver, is written

• Demultiplexor/multiplexor plugin
– Allow multiple plugins to work on the same data stream when it

saturates a single core

Future Ideas
• Extend areaDetector concepts to other types of detectors:

– ADCs
– Electrometers
– Waveform digitizers
– Oscilloscopes?

• They all produce 1-D (or 2-D for multi-channel inputs)
arrays that could benefit from plugins for file saving,
FFTs, ROI extraction, digital filtering, etc.

Future Ideas
• Export NDArrays via EPICS V4
• David Hickin (DLS) has demonstrated:

– A plugin that exports NDArrays as V4 objects over Channel
Access

– An ADDriver that receives the V4 objects on another machine and
has its own set of plugins

• Allows using multiple machines, and multiple processes,
not just multiple cores in a single IOC for plugin
processing

areaDetector Collaboration
• The move to GitHub has really helped areaDetector

become a collaborative effort
• Many more people are contributing via additions and bug

fixes.
• Make changes in their fork on github and then issue a “pull

request”.
• Collaboration meeting ~monthly on Google Hangout (U.

Pedersen, M. Rivers, A. Glowacki, M. Pearson, M.
Kraimer, N. Rees, D. Hickin, T. Cobb)

• In-person meetings ~2 times/year.
• Developed a road-map, following it pretty well.

• Architecture works well, easily extended to new detector
drivers, new plugins and new clients

• Base classes, asynPortDriver, asynNDArrayDriver,
asynPluginDriver actually are generic, nothing “areaDetector”
specific about them.

• They can be used to implement any N-dimension detector, e.g.
the XIA xMAP (16 detectors x 2048 channels x 512 points in a
scan line)

• Can get documentation and pre-built binaries (Linux,
Windows, Cygwin) from our Web site:

– http://cars.uchicago.edu/software/epics/areaDetector

• Can get code from github
– https://github.com/areaDetector

Conclusions

• Brian Tieman, Tim Madden, Tim Mooney, Arthur Glowacki,
John Hammonds, Chris Roehrig (APS)

• Ulrik Pedersen, Tom Cobb, Nick Rees (Diamond)
• Alan Greer (Observatory Sciences)
• Matthew Pearson (ORNL)
• Emma Sheppard (Australian Synchrotron)
• Lewis Muir (IMCA CAT)
• Keith Brister (LS-CAT)
• Bruce Hill (SLAC)
• Many others for enhancements and bug fixes
• NSF-EAR and DOE-Geosciences for support of GSECARS

where most of this work was done
• Thanks for your attention!!!

Acknowledgments

	Slide Number 1
	areaDetector Talk Outline
	areaDetector - Motivation
	areaDetector - Goals
	Slide Number 5
	Slide Number 6
	Slide Number 7
	areaDetector R2-0 Release
	R2-0 Organization
	Source Code Organization on github
	Types of Detector Drivers
	Detector drivers (23 total)
	Detector drivers
	Detector drivers (continued)
	Detector drivers (continued)
	Detector drivers (continued)
	Detector drivers (continued)
	ADBase.adl – Generic control screen
	Pilatus specific control screen
	MAR-345 specific control screen
	LightField driver
	LightField driver
	URL Driver
	Andor Driver
	Perkin Elmer Flat Panel Driver
	R2-0: Point Grey driver
	Point Grey GigE Camera�BlackFly PGE-20E4C
	Point Grey USB-3.0 Camera�Grasshopper3 GS3-U3-23S6M
	Point Grey Driver
	Point Grey Driver (Grasshopper3 camera)
	Plugins
	Plugins (continued)
	Plugins (continued)
	Plugins (recent additions)
	Plugins (recent additions)
	commonPlugins.adl All plugins at a glance
	NDStdArrays plugin
	ROI plugin
	Statistics plugin
	Statistics plugin (continued)
	Overlay plugin
	Overlay plugin
	Overlay plugin
	Overlay plugin
	Processing plugin
	Processing plugin�30 microsec exposure time
	Processing plugin �Pre-defined recursive filters
	Transform plugin
	Plugins: NDPluginFile
	Plugins: NDPluginFile
	Plugins: NDPluginFile
	NDPluginFile Recent Features
	NDPluginFile Recent Features
	File saving with driver
	NDPluginFile display: TIFF
	NDPluginFile display: netCDF
	NDFileHDF5
	NDFileHDF5�XML file to define file layout
	Viewers
	ImageJ Viewer
	Internals�Class hierarchy
	Recent Changes (R2-0)
	Recent Changes (R2-1)
	Recent Changes (R2-2, not released)
	Future Ideas (R2-3?)
	Future Ideas (R3-0?)
	Future Ideas
	Future Ideas
	Future Ideas
	areaDetector Collaboration
	Conclusions
	Acknowledgments

