
Writing Device Support

Andrew Johnson
AES Software Services Group

APS EPICS Training • 2015-01-08 • Writing Device Support

2

Writing Device Support – Scope

■ An overview of the concepts associated with writing EPICS Device Support routines.
■ Examples show the “stone knives and bearskins” approach.
■ The ASYN package provides a framework which makes writing device support much

easier.
– The concepts presented here still apply.

APS EPICS Training • 2015-01-08 • Writing Device Support

3

Writing Device Support – Outline

■ What is ‘Device Support’?
■ The .dbd file entry
■ The driver DSET
■ Device addresses
■ Support routines
■ Using interrupts
■ Asynchronous input/output
■ Callbacks

APS EPICS Training • 2015-01-08 • Writing Device Support

4

What is ‘Device Support’?

■ Interface between record and hardware
■ A set of routines for record support to call

– The record type determines the required set of routines
– These routines have full read/write access to any record field

■ Determines synchronous/asynchronous nature of record
■ Performs record I/O

– Provides interrupt handling mechanism

APS EPICS Training • 2015-01-08 • Writing Device Support

5

Why use device support?

■ Could instead make a diferent record type for each hardware interface, with fields
to allow full control over the provided facilities.

■ A separate device support level provides several advantages:
– Users need not learn a new record type for each type of device
– Increases modularity

• I/O hardware changes are less disruptive
• Device support is simpler than record support
• Hardware interface code is isolated from record API

■ Custom records are available if really needed.
– By which I mean “really, really, really needed!”
– Existing record types are sufficient for most applications.

APS EPICS Training • 2015-01-08 • Writing Device Support

6

How does a record find its device support?

Through .dbd file ‘device’ statements:

APS EPICS Training • 2015-01-08 • Writing Device Support

7

The .dbd file entry

■ The IOC discovers device support from entries in .dbd files
device(recType,addrType,dsetName,”dtypeName”)

• addrType is one of
AB_IO BITBUS_IO CAMAC_IO GPIB_IO
INST_IO RF_IO VME_IO VXI_IO

• dsetName is the name of the C Device Support Entry Table (DSET)
• By convention name indicates record and hardware type:

device(ai, GPIB_IO, devAidg535, "dg535")

device(bi, VME_IO, devBiXy240, "XYCOM-240")

APS EPICS Training • 2015-01-08 • Writing Device Support

8

The DSET

■ A C structure containing pointers to functions
■ Content dependent upon record type
■ Each device support layer defines a DSET with pointers to its own functions
■ A DSET structure declaration looks like:

struct dset {
long number;
long (*report)(int level);
long (*initialize)(int pass);
long (*initRecord)(struct … *precord);
long (*getIoIntInfo)(…);
… read/write and other routines as required

};

■ number specifies number of pointers (often 5 or 6)
■ A NULL is given when an optional routine is not implemented
■ DSET structures and functions are usually declared static

APS EPICS Training • 2015-01-08 • Writing Device Support

9

The DSET – initialize

long initialize(int pass);

■ Initializes the device support layer
■ Optional routine, not always needed
■ Used for one-time startup operations:

– Start background tasks
– Create shared tables

■ Called twice by iocInit()
– pass=0 – Before any record initialization

• Doesn’t usually access hardware since device address information is not yet known
– pass=1 – After all record initialization

• Can be used as a final startup step. All device address information is now known

APS EPICS Training • 2015-01-08 • Writing Device Support

10

The DSET – initRecord

long initRecord(struct … *precord);

■ Called by iocInit() once for each record with matching DTYP
■ Optional routine, but usually supplied
■ Routines often

– Validate the INP or OUTP field
– Verify that addressed hardware is present
– Allocate device-specific storage for the record

• Each record contains a void *dpvt pointer for this purpose

– Program device registers
– Set record-specific fields needed for conversion to/from engineering units

APS EPICS Training • 2015-01-08 • Writing Device Support

11

The DSET – read/write

long read(struct … *precord);

long write(struct … *precord);

■ Called when record is processed
■ Perform (or initiate) the I/O operation:

– Synchronous input
• Copy value from hardware into precord->rval
• Return 0 (to indicate success)

– Synchronous output
• Copy value from precord->rval to hardware
• Return 0 (to indicate success)

APS EPICS Training • 2015-01-08 • Writing Device Support

12

The DSET – initRecord – Device Addresses

■ Device support .dbd entry was
device(recType,addrType,dset,"name")

■ addrType specifies the type to use for the address link, e.g.
device(bo,VME_IO,devBoXy240,"Xycom XY240")

sets pbo->out:
– pbo->out.type = VME_IO

– Device support uses pbo->out.value.vmeio which is a
struct vmeio {
 short card;
 short signal;
 char *parm;
};

■ IOC Application Developer’s Guide describes all types

APS EPICS Training • 2015-01-08 • Writing Device Support

13

A simple example (vxWorks or RTEMS)

#include <recGbl.h>
#include <devSup.h>
#include <devLib.h>
#include <biRecord.h>
#include <epicsExport.h>
static long initRecord(struct biRecord *prec){

char *pbyte, dummy;
if ((prec->inp.type != VME_IO) ||
 (prec->inp.value.vmeio.signal < 0) || (prec->inp.value.vmeio.signal > 7)) {

recGblRecordError(S_dev_badInpType, (void *)prec, "devBiFirst: Bad INP");
return -1;

}
if (devRegisterAddress("devBiFirst", atVMEA16, prec->inp.value.vmeio.card, 0x1,

&pbyte) != 0) {
recGblRecordError(S_dev_badCard, (void *)prec, "devBiFirst: Bad VME

address");
return -1;

}
if (devReadProbe(1, pbyte, &dummy) < 0) {

recGblRecordError(S_dev_badCard, (void *)prec, "devBiFirst: Nothing
there!");

return -1;
}
prec->dpvt = pbyte;
prec->mask = 1 << prec->inp.value.vmeio.signal;
return 0;

}

APS EPICS Training • 2015-01-08 • Writing Device Support

14

A simple example (vxWorks or RTEMS)

static long read(struct biRecord *prec)
{

volatile char *pbyte = (volatile char *)prec->dpvt;

prec->rval = *pbyte;
return 0;

}

static struct {
long number;
long (*report)(int);
long (*initialize)(int);
long (*initRecord)(struct biRecord *);
long (*getIoIntInfo)();
long (*read)(struct biRecord *);

} devBiFirst = {
5, NULL, NULL, initRecord, NULL, read

};
epicsExportAddress(dset,devBiFirst);

APS EPICS Training • 2015-01-08 • Writing Device Support

15

The DSET – report

long report(int level);

■ Called by dbior shell command
■ Prints information about current state, hardware status, I/O statistics, etc.
■ Amount of output is controlled by the level argument

– level=0 – list hardware connected, one device per line
– level>0 – provide diferent type or more detailed information

APS EPICS Training • 2015-01-08 • Writing Device Support

16

A simple example – device support .dbd file

The .dbd file for the device support routines shown on the preceding pages might be

device(bi, VME_IO, devBiFirst, “simpleInput”)

APS EPICS Training • 2015-01-08 • Writing Device Support

17

A simple example – application .db file

An application .db file using the device support routines shown on the preceding pages
might contain

record(bi, "$(P):statusBit")
{
 field(DESC, "Simple example binary input")
 field(DTYP, "simpleInput")
 field(INP, "#C$(C) S$(S)")
}

APS EPICS Training • 2015-01-08 • Writing Device Support

18

A simple example – application startup script

An application startup script (st.cmd) using the device support routines shown on the
preceding pages might contain

dbLoadRecords("db/example.db","P=test,C=0x1E0,S=0")

which would expand the .db file into

record(bi, "test:statusBit")
{
 field(DESC, "Simple example binary input")
 field(DTYP, "simpleInput")
 field(INP, "#C0x1E0 S0")
}

APS EPICS Training • 2015-01-08 • Writing Device Support

19

Useful facilities

■ ANSI C routines (EPICS headers fill in vendor holes)
– epicsStdio.h – printf, sscanf, epicsSnprintf
– epicsString.h – strcpy, memcpy, epicsStrDup
– epicsStdlib.h – getenv, abs, epicsScanDouble

■ OS-independent hardware access (devLib.h)
– Bus address � Local address conversion
– Interrupt control
– Bus probing

■ EPICS routines
– epicsEvent.h – process synchronization semaphore
– epicsMutex.h – mutual-exclusion semaphore
– epicsThread.h – multithreading support
– recGbl.h – record error and alarm reporting

APS EPICS Training • 2015-01-08 • Writing Device Support

20

Device Interrupts

• vxWorks/RTEMS interrupt handlers can be written in C
• VME interrupts have two parameters

– Interrupt level (1-7, but don’t use level 7 on M68k) – often set with on-board jumpers or
DIP switches

– Interrupt vector (0-255, <64 reserved on MC680x0) – often set by writing to an on-board
register

• OS initialization takes two calls
1. Connect interrupt handler to vector

devConnectInterruptVME(unsigned vectorNumber,

 void (*pFunction)(void *),void *parameter);

1. Enable interrupt from VME to CPU
devEnableInterruptLevelVME (unsigned level);

APS EPICS Training • 2015-01-08 • Writing Device Support

21

I/O interrupt record processing

■ Record is processed when hardware interrupt occurs
■ Granularity depends on device support and hardware

– Interrupt per-channel vs. interrupt per-card
■ #include <dbScan.h> to get additional declarations
■ Call scanIoInit once for each interrupt source to initialize a local value:

scanIoInit(&ioscanpvt);

■ DSET must provide a getIoIntInfo routine to specify the interrupt source
associated with a record – a single interrupt source can be associated with more
than one record

■ Interrupt handler calls scanIoRequest with the ‘ioscanpvt’ value for that
source – this is one of the very few routines which may be called from an interrupt
handler

APS EPICS Training • 2015-01-08 • Writing Device Support

22

The DSET – getIoIntInfo

long getIoIntInfo(int cmd, struct … *precord,
 IOSCANPVT *ppvt);

■ Set *ppvt to the value of the IOSCANPVT variable for the interrupt source to be
associated with this record

■ You may call scanIoInit to initialize the IOSCANPVT variable if you haven’t
done so already

■ Return 0 to indicate success or non-zero to indicate failure – in which case the
record SCAN field will be set to Passive

■ Routine is called with
– (cmd=0) when record is set to SCAN=I/O Intr
– (cmd=1) when record SCAN field is set to any other value

APS EPICS Training • 2015-01-08 • Writing Device Support

23

The DSET – specialLinconv

long specialLinconv(struct … *precord, int after);

■ Analog input (ai) and output (ao) record DSETs include this sixth routine
■ Called just before (after=0) and just after (after=1) the value of the LINR,
EGUL or EGUF fields changes

■ “Before” usually does nothing
■ “After” recalculates ESLO from EGUL/EGUF and the hardware range if LINR is

LINEAR. Doesn’t change ESLO if LINR is SLOPE.
■ If record LINR field is Linear ai record processing will compute val as

val = ((rval + roff) * aslo + aoff) * eslo + eoff

Ao record processing is similar, but in reverse

APS EPICS Training • 2015-01-08 • Writing Device Support

24

Asynchronous I/O

■ Device support must not wait for slow I/O
■ Hardware read/write operations which take “a long time” to complete must use

asynchronous record processing
– TI/O ≥ 100 µs – definitely “a long time”

– TI/O ≤ 10 µs – definitely “not a long time”

– 10 µs < TI/O < 100 µs – ???

■ If device does not provide a completion interrupt a “worker” thread can be created
to perform the I/O
– this technique is used for Ethernet-attached devices

APS EPICS Training • 2015-01-08 • Writing Device Support

25

Asynchronous I/O – read/write operation

■ Check value of precord->pact and if zero:
– Set precord->pact to 1
– Start the I/O operation

• write hardware or send message to worker thread

– Return 0
■ When operation completes run the following code from a thread (i.e. NOT from an

interrupt handler)
struct rset *prset = (struct rset *)precord->rset;
dbScanLock(precord);
(*prset->process)(precord);
dbScanUnlock(precord);

■ The record’s process routine will call the device
support read/write routine – with precord->pact=1
- Complete the I/O, set rval, etc.

APS EPICS Training • 2015-01-08 • Writing Device Support

26

Asynchronous I/O – callbacks

■ An interrupt handler must not call a record’s process routine directly
■ Use the callback system (callback.h) to do this
■ Declare a callback variable

CALLBACK myCallback;

■ Issue the following from the interrupt handler
callbackRequestProcessCallback(&myCallBack,

 priorityLow, precord);

■ This queues a request to a callback handler thread which will perform the
lock/process/unlock operations shown on the previous page

■ There are three callback handler threads
– With priorities Low, Medium and High

APS EPICS Training • 2015-01-08 • Writing Device Support

27

Extended device support

■ Device support has been extended to include runtime changes of addresses in
IN/OUT fields

■ Beginnings of support for failover
■ See application developer’s guide for details

APS EPICS Training • 2015-01-08 • Writing Device Support

28

Asynchronous I/O – ASYN

■ Asyn should be your first consideration for new device support
■ It provides a powerful, flexible framework for writing device support for

– Message-based asynchronous devices
– Register-based synchronous devices

■ Will be completely described in subsequent lectures

	Writing Device Support
	Writing Device Support – Scope
	Writing Device Support – Outline
	What is ‘Device Support’?
	Why use device support?
	How does a record find its device support?
	The .dbd file entry
	The DSET
	The DSET – initialize
	The DSET – initRecord
	The DSET – read/write
	The DSET – initRecord – Device Addresses
	A simple example (vxWorks or RTEMS)
	Slide 14
	The DSET – report
	A simple example – device support .dbd file
	A simple example – application .db file
	A simple example – application startup script
	Useful facilities
	Device interrupts
	I/O interrupt record processing
	The DSET – getIoIntInfo
	The DSET – specialLinconv
	Asynchronous I/O
	Asynchronous I/O – read/write operation
	Asynchronous I/O – callbacks
	Extended device support
	Asynchronous I/O – ASYN

