Argonneo

NATIONAL LABORATORY

Writing Device Support

Andrew Johnson
AES Software Services Group

U.S. DEPARTMENT OF

ENERGY

Office of
Science

Writing Device Support - Scope

m An overview of the concepts associated with writing EPICS Device Support routines.
m Examples show the “stone knives and bearskins” approach.

m The ASYN package provides a framework which makes writing device support much
easier.

— The concepts presented here still apply.

APS EPICS Training ® 2015-01-08 e Writing Device Support

Writing Device Support - Outline

What is ‘Device Support’?
The .dbd file entry

The driver DSET

Device addresses

Support routines

Using interrupts
Asynchronous input/output
Callbacks

APS EPICS Training ® 2015-01-08 e Writing Device Support

What is ‘Device Support’?

m Interface between record and hardware
m A set of routines for record support to call

— The record type determines the required set of routines
— These routines have full read/write access to any record field

m Determines synchronous/asynchronous nature of record
m Performs record |/O

— Provides interrupt handling mechanism

APS EPICS Training ® 2015-01-08 e Writing Device Support

Why use device support?

m Could instead make a different record type for each hardware interface, with fields
to allow full control over the provided facilities.
B A separate device support level provides several advantages:
— Users need not learn a new record type for each type of device

— Increases modularity
* 1/0O hardware changes are less disruptive
* Device support is simpler than record support
* Hardware interface code is isolated from record API
B Custom records are available if really needed.
— By which | mean “really, really, really needed!”
— Existing record types are sufficient for most applications.

APS EPICS Training ® 2015-01-08 e Writing Device Support

How does a record find its device support?

Through .dbd file ‘device’ statements:

Application .db file
field(DTYP, myDevsup D

[Device Support .dbd file - %

device(ai,VME IO

APS EPICS Training ® 2015-01-08 e Writing Device Support

-

Device Support .c flle
static struct {

long number:

long (*report)(int level);

long (*initialize)(int pass)

long (*initRecord(struct ... *prd);

| epicsExportAddress (dset{myDevse

The .dbd file entry

m The IOC discovers device support from entries in .dbd files
devi ce(recType, addr Type, dset Nane, " dt ypeNane”)
* addr Type is one of
AB_IO BITBUS_IO CAMAC_IO GPIB_IO
INST_IO RF_IO VME_IO VXI_IO

* dsetName is the name of the C Device Support Entry Table (DSET)
° By convention name indicates record and hardware type:

device(ai, GPIB_ IO devAi dg535, "dg535")
devi ce(bi, VME_IO devBi Xy240, "XYCOW 240")

APS EPICS Training ® 2015-01-08 e Writing Device Support

The DSET

A C structure containing pointers to functions
Content dependent upon record type
Each device support layer defines a DSET with pointers to its own functions

A DSET structure declaration looks like:

struct dset {
| ong nunber;
|l ong (*report)(int |evel);
long (*initialize)(int pass);
|l ong (*initRecord)(struct ...*precord);
|l ong (*getlolntinfo)(.);
... read/write and other routines as required
}s

nunber specifies number of pointers (often 5 or 6)

m A NULL is given when an optional routine is not implemented

DSET structures and functions are usually declared st ati ¢

APS EPICS Training ® 2015-01-08 e Writing Device Support

The DSET - initialize

long initialize(int pass);

Initializes the device support layer
Optional routine, not always needed
Used for one-time startup operations:

— Start background tasks

— Create shared tables
Called twice by ioclnit()

— pass=0 — Before any record initialization

* Doesn’t usually access hardware since device address information is not yet known

— pass=1 — After all record initialization

* Can be used as a final startup step. All device address information is now known

APS EPICS Training ® 2015-01-08 e Writing Device Support

The DSET - initRecord

| ong initRecord(struct ...*precord);
m Called by ioclnit() once for each record with matching DTYP
m Optional routine, but usually supplied

Routines often

— Validate the INP or OUTP field

— Verify that addressed hardware is present
— Allocate device-specific storage for the record

* Each record containsa voi d *dpvt pointer for this purpose
— Program device registers
— Set record-specific fields needed for conversion to/from engineering units

APS EPICS Training ® 2015-01-08 e Writing Device Support

10

The DSET - read/write

| ong read(struct ...*precord);
long wite(struct ...*precord);
m Called when record is processed

m Perform (or initiate) the 1/O operation:
— Synchronous input
* Copy value from hardware into pr ecor d- >r val
* Return O (to indicate success)
— Synchronous output

* Copy value from pr ecor d- >r val to hardware
* Return O (to indicate success)

APS EPICS Training ® 2015-01-08 e Writing Device Support

11

The DSET - initRecord - Device Addresses

m Device support .dbd entry was
device (recType, addrType, dset, "name")
B addrType specifies the type to use for the address link, e.g.
device (bo,VME IO,devBoXy240,"Xycom XY240")
sets pbo->out:
- pbo->out.type = VME IO

— Device support uses pbo->out.value.vmeio whichisa

struct vmeio {
short card;
short signal;
char *parm;
I
m |OC Application Developer’s Guide describes all types

APS EPICS Training ® 2015-01-08 e Writing Device Support

12

A simple example (vxWorks or RTEMS)

#i ncl ude <recGol . h>

#i ncl ude <devSup. h>

#i ncl ude <devlLi b. h>

#i ncl ude <bi Record. h>

#i ncl ude <epi csExport. h>

static long initRecord(struct bi Record *prec){
char *pbyte, dummy;
I f ((prec->inp.type '= VWVE IO ||

(prec->inp.value.vneio.signal < 0) || (prec->inp.value.vneio.signal > 7)) {
rec@l RecordError (S _dev_badl npType, (void *)prec, "devBiFirst: Bad | NP");
return -1;

}
I f (devRegi ster Address("devBi First", atVMEAL6, prec->inp.value.vneio.card, O0x1,
&pbyte) 1= 0) {
recCGol RecordError (S dev_badCard, (void *)prec, "devBi First: Bad VME
addr ess");
return -1;
}

I f (devReadProbe(1l, pbyte, &dumry) < 0) {
rec@l RecordError (S _dev_badCard, (void *)prec, "devBi First: Nothing
there!l");
return -1;
}
prec->dpvt = pbyte;
prec->mask = 1 << prec->inp.val ue. vnei o. si gnal ;
return O;

APS EPICS Training ® 2015-01-08 e Writing Device Support

13

A simple example (vxWorks or RTEMS)

static long read(struct bi Record *prec)

{

vol atile char *pbyte = (volatile char *)prec->dpvt;

prec->rval = *pbyte;
return O;

}

static struct {
| ong nunber;
| ong (*report)(int);
long (*initialize)(int);
| ong (*initRecord)(struct bi Record *);
|l ong (*getlolntinfo)();
| ong (*read)(struct biRecord *);
} devBi First = {
5, NULL, NULL, initRecord, NULL, read
b
epi csExport Addr ess(dset, devBi First);

APS EPICS Training ® 2015-01-08 e Writing Device Support

14

The DSET - report

| ong report(int |evel);

m Called by dbi or shell command

m Prints information about current state, hardware status, I/O statistics, etc.
®m Amount of output is controlled by the level argument

— | evel =0 - list hardware connected, one device per line
— | evel >0 - provide different type or more detailed information

APS EPICS Training ® 2015-01-08 e Writing Device Support

15

A simple example - device support .dbd file

The .dbd file for the device support routines shown on the preceding pages might be

device(bi, VME_ IO devBi First, “sinplelnput”)

APS EPICS Training ® 2015-01-08 e Writing Device Support

16

A simple example - application .db file

An application .db file using the device support routines shown on the preceding pages
might contain

record(bi, "$(P):statusBit")

{
field(DESC, "Sinple exanple binary input")
field(DTYP, "sinplelnput")
field(INP, "#C$(C) S$(9)")

APS EPICS Training ® 2015-01-08 e Writing Device Support

17

A simple example - application startup script

An application startup script (st.cmd) using the device support routines shown on the
preceding pages might contain

dbLoadRecor ds(" db/ exanpl e. db", " P=t est , C=0x1EO, S=0")

which would expand the .db file into

record(bi, "test:statusBit")

{
field(DESC, "Sinmple exanple binary input")
field(DTYP, "sinplelnput")
field(lI NP, "#COx1EO SO")

APS EPICS Training ® 2015-01-08 e Writing Device Support

18

Useful facilities

m ANSI C routines (EPICS headers fill in vendor holes)
— epicsStdio.h — printf, sscanf, epicsSnprintf
— epicsString.h — strcpy, memcpy, epicsStrDup
— epicsStdlib.h — getenv, abs, epicsScanDouble
m OS-independent hardware access (devlLib.h)
— Bus address Local address conversion
— Interrupt control
— Bus probing
m EPICS routines
— epicsEvent.h — process synchronization semaphore
— epicsMutex.h — mutual-exclusion semaphore
— epicsThread.h — multithreading support
— recGbl.h —record error and alarm reporting

APS EPICS Training ® 2015-01-08 e Writing Device Support

19

Device Interrupts

* vxWorks/RTEMS interrupt handlers can be written in C
VME interrupts have two parameters

— Interrupt level (1-7, but don’t use level 7 on M68k) — often set with on-board jumpers or
DIP switches

— Interrupt vector (0-255, <64 reserved on MC680x0) — often set by writing to an on-board
register

OS initialization takes two calls
1. Connectinterrupt handler to vector
devConnect | nt errupt VME(unsi gned vect or Nunber,
void (*pFunction)(void *),void *paraneter);
1. Enable interrupt from VME to CPU
devEnabl el nt errupt Level VME (unsi gned | evel);

APS EPICS Training ® 2015-01-08 e Writing Device Support

20

I/0 interrupt record processing

Record is processed when hardware interrupt occurs
m Granularity depends on device support and hardware
— Interrupt per-channel vs. interrupt per-card
m #include <dbScan.h> to get additional declarations
m Call scanl ol ni t once for each interrupt source to initialize a local value:
scanl ol nit (& oscanpvt);

m DSET must provide a get | ol nt | nf o routine to specify the interrupt source
associated with a record — a single interrupt source can be associated with more
than one record

m Interrupt handler calls scanl oRequest with the ‘i oscanpvt ’ value for that
source — this is one of the very few routines which may be called from an interrupt
handler

APS EPICS Training ® 2015-01-08 e Writing Device Support

21

The DSET - getlointinfo

| ong getlolntinfo(int cnd, struct ...*precord,
| OSCANPVT *ppvt);

m Set *ppvt tothe value of the | OSCANPVT variable for the interrupt source to be
associated with this record

m You may callscanl ol ni t toinitialize the | OSCANPVT variable if you haven’t
done so already

m Return 0 to indicate success or non-zero to indicate failure —in which case the
record SCAN field will be set to Passi ve

m Routine is called with
— (cnd=0) when record is setto SCAN=I / O I ntr
— (cmd=1) when record SCANfield is set to any other value

APS EPICS Training ® 2015-01-08 e Writing Device Support

22

The DSET - specialLinconv

| ong speci al Linconv(struct ...*precord, int after);
m Analog input (ai) and output (ao) record DSETs include this sixth routine

m Called just before (af t er =0) and just after (af t er =1) the value of the LI NR,
EGUL or EGUJF fields changes

m “Before” usually does nothing

m “After” recalculates ESLOfrom EGQUL/EGUF and the hardware range if LINR is
LINEAR. Doesn’t change ESLO if LINR is SLOPE.

m If record LI NRfield is LI near airecord processing will compute val as
val = ((rval + roff) * aslo + aoff) * eslo + eoff
Ao record processing is similar, but in reverse

APS EPICS Training ® 2015-01-08 e Writing Device Support

23

Asynchronous 1/0

m Device support must not wait for slow I/O
m Hardware read/write operations which take “a long time” to complete must use
asynchronous record processing

— T,0,=100 ps — definitely “a long time”
— T,<10ps — definitely “not a long time”
— 10 ps<T,,<100 s - 777

m If device does not provide a completion interrupt a “worker” thread can be created

to perform the I/O
— this technique is used for Ethernet-attached devices

APS EPICS Training ® 2015-01-08 e Writing Device Support

24

Asynchronous I/0 - read/write operation

m Check value of pr ecor d- >pact and if zero:
— Set precord->pactto 1
— Start the I/O operation

* write hardware or send message to worker thread

— Return O

m When operation completes run the following code from a thread (i.e. NOT from an
interrupt handler)

struct rset *prset = (struct rset *)precord->rset;
dbScanLock(precord);
(*prset->process) (precord);
dbScanUnl ock(precord);
m The record s process routine wll call the device

support read/wite routine — wth precord->pact=1
- Complete the I/0, set r val , etc.

APS EPICS Training ® 2015-01-08 e Writing Device Support

25

Asynchronous I/0 - callbacks

m An interrupt handler must not call a record’s process routine directly
m Use the callback system (cal | back. h) to do this
m Declare a callback variable
CALLBACK nyCal | back;
B |ssue the following from the interrupt handler

cal | backRequest ProcessCal | back(&ryCal | Back,
priorityLow, precord);

® This queues a request to a callback handler thread which will perform the
lock/process/unlock operations shown on the previous page

m There are three callback handler threads
— With priorities Low, Medium and High

APS EPICS Training ® 2015-01-08 e Writing Device Support

26

Extended device support

m Device support has been extended to include runtime changes of addresses in
IN/OUT fields

B Beginnings of support for failover
m See application developer’s guide for details

APS EPICS Training ® 2015-01-08 e Writing Device Support

27

Asynchronous 1/0 - ASYN

m Asyn should be your first consideration for new device support
m [t provides a powerful, flexible framework for writing device support for

— Message-based asynchronous devices
— Register-based synchronous devices

m Will be completely described in subsequent lectures

APS EPICS Training ® 2015-01-08 e Writing Device Support

28

	Writing Device Support
	Writing Device Support – Scope
	Writing Device Support – Outline
	What is ‘Device Support’?
	Why use device support?
	How does a record find its device support?
	The .dbd file entry
	The DSET
	The DSET – initialize
	The DSET – initRecord
	The DSET – read/write
	The DSET – initRecord – Device Addresses
	A simple example (vxWorks or RTEMS)
	Slide 14
	The DSET – report
	A simple example – device support .dbd file
	A simple example – application .db file
	A simple example – application startup script
	Useful facilities
	Device interrupts
	I/O interrupt record processing
	The DSET – getIoIntInfo
	The DSET – specialLinconv
	Asynchronous I/O
	Asynchronous I/O – read/write operation
	Asynchronous I/O – callbacks
	Extended device support
	Asynchronous I/O – ASYN

